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Abstract. The evolutionof the sedimentation equilibrium from the initial state of theuniform 
distribution of particles in a column of aqueous suspension of interactingpolystyrene particles 
is investigated. An analytic expression for the particle concentration is obtained as a function 
of the height in the column and of the time from the initial state. The difference between the 
gravitational force and the elastic restoring force on a particle in the suspension is equated 
to the viscous drag force on the particle. The drift velocity of the particle is modelled in order 
to investigate the evolution of the sedimentation equilibrium. The calculation based on the 
present theory agrees very well with the reported experimental evolution of the particle 
concentration in colloidal liquid. 

1. Introduction 

Aqueous suspensions of polystyrene particles are known to exhibit many interesting 
features. They develop different kinds of ordering, like gas, liquid, crystalline and 
glass, as in the case of a condensed matter system (Pieranski 1983, Arora et a1 1988, 
Kesavamoorthy et a1 1988, 1989). Since the density of the polystyrene particle 
(1.05 g ~ m - ~ )  is higher than that of water (1 g ~ m - ~ )  there is a certain amount of gravi- 
tational force on the particle. Gravity causes the particle concentration to be higher at 
the bottom than at the top of a column of colloidal suspension. The extent to which the 
particle concentration varies along the height of the column depends on the strength 
of interparticle interaction (Kesavamoorthy and Arora 1985). The observed smooth 
variation of the particle concentration down the length of the column has been used to 
determine Young’s modulus of the colloidal crystal (Crandall and Williams 1977) and 
the bulk modulus of the colloidal liquid (Kesavamoorthy and Arora 1985) by angle- 
resolved polarised light scattering techniques. 

One does not always observe a smoothly varying particle concentration down the 
column. Arora et a1 (1988) have reported that a homogeneous colloidal gas phase 
separates into a dense phase (particle-rich) and a rare phase (particle-poor) on decreas- 
ing the impurity concentration, c. At the boundary between these phases, the particle 
concentration decreases discontinuously. On reducing c further, they noticed that the 
boundary disappears resulting in a smoothly varying particle concentration down the 
column. Siano (1979) has observed layered sedimentation in colloidal suspensions 
having a gradient in c down the column, in which the particle concentration has shown 
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many discontinuities. It is now fairly clear that the particle concentration in a column 
varies continuously or discontinuously depending on c, the gradient in c and the average 
particle concentration, n. Spinodal decomposition has been invoked to explain the 
observed features of layered sedimentation (Siano 1979) whereas Barker and Grimson 
(1987) have used a solitary wave model to explain the above features. Jansen et a1 
(1986) have studied the phase separation and sedimentation in sterically stabilised silica 
dispersions. 

It is known that the non-interacting colloidal particles of diameter -0.1 pm in 
aqueous suspension take about 1.2 years to drift a distance of 1 cm under gravity 
(Pieranski 1983). This implies that the colloidal gas of -0.1 pm particles remains prac- 
tically homogeneous over time, due to the fluctuations in temperature, vibration of the 
floor, etc. However, when these particles start interacting, as in a colloidal liquid, the 
particle concentration at different heights varies and attains sedimentation equilibrium 
in -3 h (Kesavamoorthy and Arora 1985). Kesavamoorthy and Arora (1985) have 
developed aformalism that describes the equilibrium particle concentration as a function 
of height of the column of polystyrene colloidal liquid. They shook the cylindrical cell 
containing the suspension in order to prepare the initial state of uniform distribution of 
particles and measured the particle concentration at the top of the column as a function 
of time; the particle concentration was found to decrease and attain the sedimentation 
equilibrium in =3 h. At  equilibrium, they equated the gravitational force to the elastic 
restoring force and explained the equilibrium properties. A number of investigations 
have been reported on the evolution of sedimentation equilibrium in non-interacting 
colloids. Chandrasekar (1943) has investigated the evolution of the distribution of non- 
interacting colloidal particles theoretically in a cylindrical container on the basis of a 
delta function distribution by considering the gravity and the diffusion. Huang and 
Somasundaram (1988) have recently studied by computer simulation the evolution of 
the particle concentration at any height in a cylindrical column of non-interacting colloid 
from a uniform distribution. However, the evolution of the sedimentation equilibrium 
in an interacting colloid has not, to my knowledge, been investigated. In the present 
work, such an investigation is reported. In a column of colloidal liquid, the difference 
between the gravitational force and the elastic restoring force on a particle at any height 
and time is equated to the viscous drag force on the particle. The drift velocity is modelled 
according to the initial conditions, the boundary conditions and the asymptotic value. 
An analytic expression for the particle concentration is obtained as a function of height 
and time. The calculated time variation of the particle concentration at the top of the 
column is shown to fit well with the reported data (Kesavamoorthy and Arora 1985). 

2. Theory 

Consider a column of height h of aqueous suspension of interacting colloidal particles 
of diameter 2a, with the average particle concentration, Z. Let g be the acceleration due 
to gravity acting along the z axis, and n(z ,  t )  be the particle concentration at the height 
z and time t. The difference between the gravitational force on a layer at the height z 
and that at z + d z  is given as (Kesavamoorthy and Arora 1985) 

F ,  = 4 n a 3  Ap gAn(z,  t )  d z  

where A is the area of cross section of the column and Ap is the difference in density 
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between the particle and water. The cross sectional area of a particle is nu2 and hence 
the difference between the gravitational force on a particle at z and that at z + d z  is 

F, = F , n a 2 / A  = 4 n 2 a 5  Apgn(z , t )dz .  (1) 
The difference between the elastic restoring force on a layer at z and that at z + d z  is 
given as (Kesavamoorthy and Arora 1985) 

Fz = -BAAV/V 

where B is the bulk modulus of the colloidal liquid, V is the volume of the suspension 
per particle and AV is the change in V. The value of B depends on the impurity 
concentration and the average particle concentration (Kesavamoorthy and Arora 1985). 
B is a constant for a suspension that has attained the deionisation equilibrium. The above 
equation for F2 is the equilibrium equation for B. Due to the anelastic behaviour of the 
system, F, would be high initially and relax to the equilibrium value, -BA AV/V. This 
relaxation time is less than 0.1 s at room temperature for a metallic crystal. For the 
colloidal liquid of interest here, this time would be still smaller. The evolution of the 
sedimentation equilibrium extends to more than three hours (figure 1). Since this time 
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Figure 1. The variation of the particle con- Figure 2. The variation of the inverse of the par- 
centration at the top of the interacting colloidal ticle concentration with the height of the column 
column with time. ii = 4.76 X 1 0 ' * ~ m - ~ ;  2a = of interacting colloidal suspension as t+ 3 ~ .  E = 
0.091 pm. X :  experimental value for the three- 4.76 X 10'2cm-3; 2a = 0.091 p m ;  B = 0.86 dyn 
day-old suspension ( B  = 0.55 dyn cm-2); 0: cm->. 0: obtained from equation (17); -: 
experimental value for the month-old suspension obtained from equation (6). 
( B  = 0.86 dyn cm-2), Curves C ,  (---) and C2 
(-) are the corresponding theoretical fits 
obtained using equation (16). 

scale is much larger than the relaxation time, one can apply the above equation for F, 
to the sedimentation process. Since AV/V = -dn(z, t)/n(z, t) the difference between 
the elastic restoring force on a particle at z and that at z + d z  is 

Fe = F z n a 2 / A  = n u 2  B dn(z, t)/n(z, t). (2) 
If the forces F, and Fe are equal, the particles at z and z + d z  will not move with respect 
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to each other. Otherwise Fg - Fe will be equal to the difference between the viscous 
force on a particle at z and that at z + dz .  Hence, 

F ,  - F e  = 6 n q a  d u ( z ,  t )  

Cn(z ,  t )  - (D/n(z,  t ) )  dn(z,  t ) /dz = du(z. t ) /dz  

(3) 
where q is the viscosity of water and d u(z ,  t )  is the difference between the drift velocities 
of particles at z + d z  and z .  Substituting equations (1) and (2) in (3), one gets 

(4a) 
where 

c = 2na4 AP g/9q 
D = Ba/6q .  

Consider the aqueous suspension of sub-micrometre polystyrene particles contained in 
a cylindrical cell from z = 0 to h .  Let the suspension have uniform particle concentration 
throughout the column at t = 0 (achieved by shaking) and leave it undisturbed thereafter. 
The particles will drift according to equation ( 4 ) ,  and as t-+ x the suspension will 
approach sedimentation equilibrium with 

Hence equation ( 4 )  reduces to 
du(z,  x ) / d z  = 0. 

Cn(z,  m )  - (D/n(z,  x)) dn(z,  x ) / d z  = 0. 

Writing n(z ,  x)-l = u(z ,  x ) ,  the above equation becomes 

Equation (5) is exactly the same as equation (4)  in Kesavamoorthy and Arora (1985) 
and its solution is given by 

Kesavamoorthy and Arora (1985) have reported that this solution fits very well to their 
experimentally determined particle concentration at various heights of the colloidal 
liquid at sedimentation equilibrium. 

As has been said earlier, this work is concerned with the evolution of the particle 
concentration at various heights. Let the drift velocity and the particle concentration at 
the height z be U and n while those at z + d z  are U + d U and n + d n  respectively. Let 
d N / d t  be the net rate of increase in the number of particles in the cylindrical disc 
bounded by the layers z and z + d z  with area A .  Then 

On simplifying the above equation, one gets 

Neglecting the term du  d n  in comparison with other terms and rearranging, equation 
(7) becomes 

On combining equation (8) and equation ( 4 )  and using n-l = U ,  one gets 

Eliminating d U /d z from equation (9) one gets 

Consider the suspension in which the particle concentration varies down the column 

C + D du(z,  x ) / d z  = 0. 

U(Z, x) = -Cz/D + ~ ( 0 ,  x). 

( 5 )  

( 6 )  

d N / d t  = A d z  d n / d t  = Anu - A(n + dn)(u + du).  

d z d n / d t =  - n d u -  u d n - d u d n .  ( 7 )  

d u / d z  = -n- l  d n / d t  - (u/n) d n l d z .  

C + D d u / d z  = u d u / d z  = d u / d t  + u du /dz .  

D d u l d t  = u(D - U )  d u / d z  + uC. 

(8) 

(9) 

(10) 
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continuously with finite particle concentrations at the top and bottom. This is possible 
because the interparticle separation happens to be smaller than the position of the 
minimum in the pair potential (Kesavamoorthy et af 1989). In this situation the structural 
stability is achieved via the repulsive pair potential and the excluded volume effect. If 
U # 0 at the top surface, z = 0, then a particle-free region will appear at the top; this is 
not the situation considered here. Hence, U = 0 at the top surface, and at the bottom of 
the container, z = h,  U is zero at any time because of the boundary. The particle 
concentration is the same at all points in a horizontal layer. As t--, cc, the drift velocity 
at all heights should be zero. Let us model the drift velocity by factorising the depen- 
dences of z and t for simplicity. As far as the z dependency is concerned, a triangular 
function (linear in z )  is not suitable since its derivative has a discontinuity at z = h/2.  
Hence, let us choose a parabolic function of z .  For the time dependency let us choose 
an exponentially decreasing function. Hence the drift velocity is assumed to be of the 
form 

U = u o z ( h  - z )  exp(-kt) (11) 
where u 0  and k are constants. Substituting equation (11) in equation (10) one gets 
d u / d t  = uuo(h  - 22)[1 - uoz(h - z )  exp(-kt)/D] exp(-kt) 

Writing U = U exp( -k t ) ,  equation (12) becomes 

where 

+ u 0  Cz(h - z )  exp(-kt)/D. (12) 

d U / d t  = p U +  q (13) 

p = k + ( h  - 2z)[v0 exp(-kt) - u;z(h - z )  exp(-2kt)/D] 

q = u0Cz(h  - z ) / D .  
The solution of equation (13) is given by 

Uexp(f(t)) = q J‘ exp(f(t’)) dt’  + S = uexp(f(t) + kt) (14a) 
0 

where 

f(t) = - 1 p  d t  = -kt + (h  - 2 z ) [ u 0  exp(-kt)/k - u ; z ( h  - z )  exp(-2kt)/2kD] 

and S is a constant which can be determined from the initial conditions. Let us consider 
the case where the suspension is shaken at t = 0 and left undisturbed thereafter. At 
t = 0 the particle concentration is uniform throughout the column: 

Hence, equation (14a) gives 

wherefo is the value off(t) at t = 0, given by 

Substituting equation (14c) into (14a) and recalling that U = n-l, one gets 

(14b) 

u(z, 0) = n - l a  

s = exp(f0 > / n  (14c) 

fo = (h  - ~z)[uO / k  - u ; z ( ~  - ~ ) / 2 k D ] .  ( 1 4 4  

(15) 4 Z > t >  = eXP(f(t) + kt)/(q i’ exp(f(t’1) dt‘ + exp(fd/f i ) .  
0 

Equation (15) describes the evolution of sedimentation equilibrium in a colloidal liquid. 
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3. Results and discussion 

The relevant features of the reported experimental work (Kesavamoorthy and Arora 
1985) have been given here. Aqueous suspensions of polystyrene spheres of diameter 
0.091 p m  (Serva Feinbiochemica GmbH, FRG) were prepared at the average particle 
concentration, 5, of 4.76 x 1012 ~ m - ~ .  f i  was determined by an evaporation technique 
(Udo and de Souza 1980). The suspension was held in a closed cylindrical glass scattering 
cell (diameter 1 cm, height 2.5 cm) that also contained a mixed bed of ion-exchange 
resins at the bottom (cation : Dowex; anion : DuoliteA 161C). The suspension was found 
to separate into phases initially for about a day, after which no boundary was seen in the 
suspension due to the re-entrant phenomena (Arora et a1 1988). The suspension was left 
for two more days. The angle-resolved, polarised, static light scattering intensity from 
this homogeneous liquid-like ordered suspension was recorded at various heights and 
at different times after shaking the suspension. The structure factor thus measured was 
fitted to the calculated one using a rescaled mean-sphere approximation (Tata et a1 1987) 
and the particle concentration at various heights and at different times was obtained 
from the best fit. The suspension was left in the cell for about a month. It was shaken 
again, the structure factor was measured at different times and at various heights, 
and the corresponding concentrations were obtained. The data on a three-day-old 
suspension (Kesavamoorthy and Arora 1985) and those on a month-old suspension (not 
reported earlier) have been analysed here. 

The impurity concentration in the suspension decreases due to the action of resins 
and comes to an equilibrium value in about a week (Kesavamoorthy and Arora 1985, 
Okubo 1987). The evolution of the bulk modulus, B ,  of the suspension during this time 
has been observed (Kesavamoorthy and Arora 1985). B increases monotonically and 
saturates in about a week implying that the interparticle interaction increases for a week 
and becomes steady. At two different values of B ,  the particle concentration at the top 
of the column of the suspension was measured and is shown in figure 1. It is observed 
from figure 1 that the particle concentration in the three-day-old suspension (the points 
on the curve C,) decreases to a greater extent than that in the month-old suspension (the 
points on the curve C,). In view of the fact that B saturates in about a week, the value 
of B is aconstant in the month-old suspension as assumed in the present theory (equation 
(2)). Figure 1 indicates that the particle concentration comes to an equilibrium in about 
3 hours and the measurement has been taken up to 7 hours. During this period of 
7 hours, the value of B has increased by less than 1% in the three-day-old sample 
(Kesavamoorthy and Arora 1985). Hence, the present theory might be suitable for a 
three-day-old sample also. 

The theory is compared with the experiment. For z = 0, equation (15) reduces to 

n(0, t) = Eexp[-uoh(l  - exp(-kt)/k)]. (16) 

The best fit to the experimental data obtained using the above expression is shown in 
figure 1 as the curves C1 and C2.  It is clear that the fit is very good. The fit gives k = 
3 x s-l and u o  = 2.5 x cm-' sC1 for the three day-old sample (curve C,). The 
maximum drift velocity of the particle according to the present model is realised at t = 
0 and at z = 0.5, with the value 6.25 x cm s-'. Assuming a body-centred cubic type 
of coordination in the colloidal liquid with 6 = 4.76 X lo1* cm-3 (Lindsay and Chaikin 
1982), the nearest neighbour distance, 1, comes out as 0.65 pm. Hence, the particle 
would move a distance of the order of 0.1 1 with this maximum drift velocity in one 
second. The free Stokes sedimentation velocity, us = 2a2 Ap g/9q,  for this suspension 
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works out to be 2.29 X 10-8 cm s-l which is 273 times smaller than the maximum drift 
velocity. According to equation ( l l ) ,  the drift velocity at z = 0.5 becomes U ,  at t = 5.2 h. 
It is important to note that the sedimentation equilibrium is reached in about 3 h which 
implies that throughout the duration of the experiment the particle drifts with velocity 
greater than U,. This becomes possible because of the interparticle interaction. The best 
fittothedataforthemonth-oldsuspension(curveCzinfigure 1)givesk = 1.46 x ~ O - ' S - ~  
and u o  = 6.42 x cm-ls-'. Comparing the values of k obtained for curves C 1  and 
C 2  it is clear that as the interparticle interaction increases, the suspension reaches the 
sedimentation equilibrium more quickly. It is also clear from the values of U that in order 
to reach the equilibrium more quickly the particles must drift faster. Since the fits for 
the three-day-old sample and the month-old sample are equally good, the 1% variation 
of B during the 7 h of the experiment in the three-day-old sample is not serious enough 
to affect the solution given by equation (15). 

The solution given by equation (15) is approximate since the higher-order term in 
equation (7) has been neglected. In order to check its validity, the asymptotic form of 
equation (15) is compared with equation (6) which is exact. As t+ x, equation (15) 
becomes 

u(z ,  =) = exp(fo) /n  + q exp(f(t')) dt ' .  jOX 
On simplifying, it becomes 

1 - ./2p 

-.lW 
4 2 ,  m )  = exp(fo)/fi + ( q / k )  exp(-CY2 /48) j e x p ( 8 0 2 )  d o  (17) 

where 

CY = uo(2z - h ) / k  o = exp( -kt) - C Y / ~ P .  
The values of u o  and k are taken from the fit to the data in figure 1 (curve C,). Taking 

the experimental value of B (0.55 dyn cm-2), D is calculated from equation (4c) and 
found to be 4.2 X dyn cm-' P-l. Figure 2 shows the inverse of the particle con- 
centration at various heights of the three-day-old suspension as t + =. The points in this 
figure were obtained graphically using equation (17). The straight line was obtained 
using equation (6) for which u(0,  m)  was taken from figure 1 (curve C,)  and C was 
calculated using equation (4b). From the closeness of these points to the straight line it 
is clear that equation (15) representing the evolution of particle concentration at various 
height is quite valid. 

It may be surprising to note that the simple-minded approach outlined in this paper 
to determine the evolution of the interacting colloidal suspension works very well. In 
this approach, the diffusion of interacting particles is not considered. The boundary 
conditions for the column of colloidal suspension (Chandrasekar 1943) are also not 
considered here. Still, this approach is good enough because of the appropriate model- 
ling of the drift velocity. The boundary conditions are taken into consideration indirectly 
by modelling the drift velocity as becoming zero at z = 0 and h ,  and also as t+ x, 
Similarly, the effect of diffusion has been incorporated in the values of the constants U "  

and k. The values of u o ,  k and D depend on the strength of interaction. The present 
formalism can be applied to a situation where the particle concentration varies smoothly 
along one axis and it has been demonstrated that it is applicable to a colloidal liquid that 
has a smoothly varying concentration along 2. However, it cannot account for the layered 
sedimentation (Siano 1979) in its present form. Siano (1979) obtained the layered 

= u ; z ( ~  - 2)(22 - h)/2kD 
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sedimentation in a colloidal suspension that had a tailor-made gradient in the impurity 
concentration. Hence, the inter-particle interaction would have been different at dif- 
ferent heights in the suspension due to the variation in the impurity concentration. 
Probably the drift velocity in this case should be modelled in such a way that the functions 
of z and t differ in different segments of the column, so as to describe the observed 
evolution of the sedimentation equilibrium. 

4. Conclusion 

The present investigation describes the evolution of the sedimentation equilibrium in 
an aqueous suspension of interacting polystyrene particles. The difference between the 
gravitational force and the elastic restoring force on a particle is equated to the viscous 
drag force on the particle. In a column of the suspension contained in a cylindrical cell, 
the drift velocity of the particle is modelled as a decreasing exponential in time and a 
parabola in height. It is shown that results obtainedfrom the calculation using the present 
theory agree well with the reported experimental evolution of the particle concentration. 
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